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Abstract

This paper shows that various well-known dynamical systems can be described as vector fields
associated to smooth functions via a bracket that defines what we call a Leibniz structure. We show
that gradient flows, some control and dissipative systems, and non-holonomically constrained simple
mechanical systems, among other dynamical behaviors, can be described using this mathematical
construction that generalizes the standard Poisson bracket currently used in Hamiltonian mechanics.
The symmetries of these systems and the associated reduction procedures are described in detail.
A number of examples illustrate the theoretical developments in the paper.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that most of classical mechanics can be formulated using a Poisson
structure (see for instance[1,19]and references therein). A Poisson structure on a manifold
P is a bilinear map{·, ·} : C∞(P)×C∞(P)→ C∞(P) that defines a Lie algebra structure
on the algebraC∞(P) of smooth functions on that manifold and that is a derivation on
each entry. This property allows the association of a vector fieldXh to any smooth function
h ∈ C∞(P), usually referred to as the Hamiltonian vector field of the Hamiltonian function
h. The properties of the bracket{·, ·}have important consequences on the dynamical features
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of the vector fieldXh. For instance, its antisymmetry implies that the Hamiltonian function
h is a constant of the motion forXh. Additionally, the fact that{·, ·} satisfies the Jacobi
identity implies that the flow ofXh is a Poisson map, that is, it respects the bracket.

It has been noticed in recent times that a weakening of the defining conditions of a
Poisson system is sometimes necessary in order to accommodate the description of more
general dynamical systems. A well known example is the use of brackets that do not satisfy
the Jacobi identity, known as almost Poisson brackets (seeSection 3), in the context of
non-holonomically constrained mechanical systems.

In this paper we go all the way in this direction and we work with a bracket, first introduced
in [18], that is just required to be bilinear and a derivation on each of its entries. The
derivation property, also known as the Leibniz rule, justifies why we refer to this structure
asLeibniz bracket. The properties exhibited by the dynamical systems defined in this way
are in general very different from those presented by standard Hamiltonian systems since
most of the features of those systems are based on the Lie algebraic properties of the bracket
that we have chosen to drop. This construction should not be mistaken with the Leibniz
structures (also called Loday algebras) introduced by Loday[20] in the algebraic context.

The introduction of the notion of Leibniz system, whose elementary properties are pre-
sented inSection 2, is justified by the great variety of relevant systems whose natural
underlying mathematical structure seems to be based in this kind of brackets. A number of
these systems are described inSections 3 and 4. To be more specific, inSection 3we have
identified the Leibniz structure inherent to a number of systems that can be found in the
literature andSection 4is devoted to the Leibniz formulation of simple mechanical systems
subjected to non-holonomic constraints. One of the main differences between our treatment
of this problem and other bracket formulations for non-holonomic systems is the fact that
our bracket is defined in the entire phase space of the unconstrained system, unlike other
approaches that provide a bracket only on the constraint submanifold. The Leibniz bracket
that we construct in that section associates to the Hamiltonian of the unconstrained system a
vector field that, when restricted to the constraint submanifold, coincides with the evolution
vector field of the constrained system. As we point out inSection 4, the construction of this
bracket involves the use of certain extensions that make it not to be uniquely determined by
the dynamics that we want to describe. This leeway can be used in specific examples (see
Section 4) to encode in a single bracket entire families of constraints, which may be very
useful in the study of bifurcation problems in the non-holonomic context.

Section 5contains a first approach to the study of the symmetries and the reduction of
a Leibniz system. We introduce a notion of momentum map associated to symmetries that
do not necessarily preserve the Leibniz bracket but that nevertheless produce non-trivial
conservation laws as long as the Hamiltonian function is invariant. We also formulate a
theorem that spells out, under certain regularity assumptions, how the orbit space of a
symmetry that does respect the Leibniz structure (in a weak sense that is introduced in
the text) is again a Leibniz manifold. This result generalizes to the context of the weak
symmetries of a Leibniz manifold the well known result for the strong symmetries of a
Poisson manifold. The analog of symplectic or Marsden–Weinstein reduction (see[25]) in
this context is the subject of ongoing research and will be treated elsewhere.

Finally,Section 6contains the generalization to the Leibniz context of the Poisson reduc-
tion results in[4,24,27]that characterize the situations in which a new Leibniz structure can
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be obtained by restriction to a subset and projection to the orbit space of a (pseudo)group
of symmetries or to the leaf space of a distribution.

2. Leibniz systems

Definition 2.1. LetP be a smooth manifold and letC∞(P) be the ring of smooth functions
on it. A Leibniz bracketonP is a bilinear map [·, ·] : C∞(P)×C∞(P)→ C∞(P) that is a
derivation on each entry, that is:

[fg, h] = [f, h]g+ f [g, h] and [f,gh] = g[f, h] + h[f, g]

for anyf, g, h ∈ C∞(P). We will say that the pair(P, [·, ·]) is a Leibniz manifold. If the
bracket [·, ·] is antisymmetric, that is, it satisfies

[f, g] = −[g, f ]

for every pair of functionsf, g ∈ C∞(P) then we say that(P, [·, ·]) is analmost Poisson
manifold. We will usually denote the almost Poisson brackets with the symbol{·, ·}.

A functionf ∈ C∞(P) such that [f, g] = 0 (respectively, [g, f ] = 0) for anyg ∈ C∞(P)
is called aleft (respectively,right) Casimirof the Leibniz manifold(P, [·, ·]).

Definition 2.2. Let (P, {·, ·}) be an almost Poisson manifold. We define theJacobiatorof
the bracket{·, ·} as the mapJ : C∞(P)× C∞(P)× C∞(P)→ C∞(P) given by

J(f, g, h) = {{f, g}, h} + {{g, h}, f } + {{h, f }, g}. (2.1)

A Poisson structureonP is an almost Poisson structure onP for which the Jacobiator is
the zero map.

The following remarks are a direct consequence of the fact that the Leibniz structure is
a derivation.

Let (P, [·, ·]) be a Leibniz manifold and leth be a smooth function onP . There exist two
vector fieldsXR

h andXL
h onP uniquely characterized by the relations:

XR
h [f ] = [f, h] and XL

h [f ] = −[h, f ] for any f ∈ C∞(P).
Given two smooth functionsg, h ∈ C∞(P) there exists a unique vector fieldXg,h on P
such that

Xg,h[f ](m) = J(f, g, h)(m) for any f ∈ C∞(P).
We will callXR

h theLeibniz vector fieldassociated to theHamiltonian functionh ∈ C∞(P).
In this paper, the abbreviationXh will always denoteXR

h . The flowFt of the vector field
Xh satisfies

d

dt

∣∣∣∣
t=0
g(Ft(m)) = [g, h](Ft(m)) for any g ∈ C∞(P). (2.2)

A straightforward corollary of(2.2) is that in the context of almost Poisson manifolds the
Hamiltonian function is a constant of motion, that is, ifFt is flow of Xh thenh ◦ Ft = h



4 J.-P. Ortega, V. Planas-Bielsa / Journal of Geometry and Physics 52 (2004) 1–27

for anyh ∈ C∞(P). Note that since [·, ·] andJ are a derivation on each of their arguments
they only depend on the first derivatives of the functions and thus, we can define two tensor
mapsB : T ∗P × T ∗P → R andBJ : T ∗P × T ∗P × T ∗P → R by

B(df,dg) = [f, g] and BJ(df,dg,dh) = J(f, g, h) (2.3)

for any f, g, h ∈ C∞(P). We will refer toB : T ∗P × T ∗P → R as theLeibniz tensor
associated to Leibniz bracket [·, ·]. Conversely, any(0,2)-tensorB ∈ T 2

0(P) defines a
Leibniz bracket [·, ·] on C∞(P) via the first equality in(2.3). These two structures will
be used interchangeably. We can associate to the tensorB two vector bundle mapsB�L :

T ∗P → TP andB�R : T ∗P → TP defined by the relations:

B(α, β) = −〈β,B�L(α)〉 and B(α, β) = 〈α,B�R(β)〉
for anyα, β ∈ T ∗P . Notice that when the bracket [·, ·] is symmetric (respectively, antisym-
metric) we have thatB�R = −B�L (respectively,B�R = B�L) andXR

h = −XL
h (respectively,

XR
h = XL

h ) for anyh ∈ C∞(P). We say that the Leibniz manifold(P, [·, ·]) isnon-degenerate

whenever the mapsB�L andB�R are vector bundle isomorphisms. All along this paper, the

abbreviationB� will always denoteB�R.

Definition 2.3. Let (P, [·, ·]) be a Leibniz manifold. We define theleft andright charac-
teristic distributionsEL andER, respectively, by

EL := span{XL
h |h ∈ C∞(P)} = B�L(T ∗P) and

ER := span{XR
h |h ∈ C∞(P)} = B�R(T ∗P).

Notice that if the Leibniz bracket [·, ·] is either symmetric or antisymmetric then both
distributions coincide. If additionally the Leibniz manifold(P, [·, ·]) is non-degenerate then
EL = ER = TP and we can define a tensor fieldω : TP× TP→ R of type(0,2) onP by

ω(Xf ,Xg) = [f, g] (2.4)

for any f, g ∈ C∞(P). Given any pointm ∈ P and any vector subspaceV ⊂ TmP we
denote

Vω := {w ∈ TP|ω(m)(v,w) = 0 for any v ∈ V }.
If the tensorω is antisymmetric (respectively, symmetric) then it is a two-form (respectively,
a pseudo-Riemannian metric) onP . If additionally the formω is closed we say thatω is a
symplectic formonP and that the pair(P, ω) is asymplectic manifold.

Two smooth functionsh1, h2 ∈ C∞(P) on the Leibniz manifold(P, [·, ·]) are said to be
equivalentif and only if [f, h1 − h2] = 0 for anyf ∈ C∞(P) or equivalently, whenever
Xh1 = Xh2. Notice that this definition establishes an equivalence relation on the setC∞(P).

Definition 2.4. A Leibniz mapbetween two Leibniz manifolds(P1, [·, ·]1) and(P2, [·, ·]2)
is a smooth mapφ : P1 → P2 that satisfies

φ∗[f, g]2 = [φ∗f, φ∗g]1 for any f, g ∈ C∞(P2).
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Lemma 2.5. Letφ : (P1, [·, ·]1)→ (P2, [·, ·]2) be a Leibniz map. Leth ∈ C∞(P2), F2
t be

the flow of the Leibniz vector fieldXh, F1
t the flow ofXh◦φ, andDom(F1

t ) andDom(F2
t )

the domains of definition ofF1
t andF2

t , respectively. ThenDom(F1
t ) ⊂ φ−1(Dom(F2

t ))

and

F2
t ◦ φ(z) = φ ◦ F1

t (z) for anyz in the domainDom(F1
t )ofF1

t . (2.5)

Additionally,Xh◦φ andXh areφ-related, that is, Tφ ◦Xh◦φ = Xh ◦ φ.

Proof. Let z ∈ Dom(F1
t ) andg ∈ C∞(P2) arbitrary. Using the Leibniz condition on the

mapφ we can write

dg((φ ◦ F1
t )(z)) ·

d

dt
(φ ◦ F1

t )(z)

= d

dt
g((φ ◦ F1

t )(z)) =
d

dt
(g ◦ φ)(F1

t (z)) = [g ◦ φ, h ◦ φ](F1
t (z))

= [g, h](φ ◦ F1
t )(z) = dg((φ ◦ F1

t )(z)) ·Xh((φ ◦ F1
t )(z)).

Since the functiong is arbitrary, this equality implies that

d

dt
(φ ◦ F1

t )(z) = Xh((φ ◦ F1
t )(z)),

which allows us to conclude that(φ ◦ F1
t )(z) is an integral curve ofXh through the point

φ(z). SinceF2
t is the flow ofXh this automatically implies thatφ(z) ∈ Dom(F2

t ). As z ∈
Dom(F1

t ) is arbitrary we get thatφ(Dom(F1
t )) ⊂ Dom(F2

t )which implies that Dom(F1
t ) ⊂

φ−1(Dom(F2
t )). Additionally, the uniqueness property of the flow of a smooth vector field

allows us to write that(φ ◦ F1
t )(z) = (F2

t ◦ φ)(z).
Theφ-relatedness ofXh◦φ andXh follows from taking the time derivative of(2.5) at

t = 0, recalling that Dom(F1
t ) becomes the entire manifoldP1 whent goes to zero. �

Proposition 2.6. Letφ : (P, {·, ·}P)�→(Q, [·, ·]Q)be a surjective Leibniz map. If(P, {·, ·}P)
is a Poisson manifold then so is(Q, [·, ·]Q).

Proof. Letf, g ∈ C∞(Q) arbitrary. The surjectivity ofφ implies that any element inQ can
be written asφ(z), for somez ∈ P . Hence,

[f, g]Q(φ(z)) = {f ◦ φ, g ◦ φ}P(z) = −{g ◦ φ, f ◦ φ}P(z) = −[g, f ]Q(φ(z)),

which proves the antisymmetry of [·, ·]Q. Analogously, in order to prove that [·, ·]Q satisfies
the Jacobi identity considerf, g, h ∈ C∞(Q) andz ∈ P . Sinceφ is a Leibniz map we can
write

[f, [g, h]Q]Q(φ(z))+ [g, [h, f ]Q]Q(φ(z))+ [h, [f, g]Q]Q(φ(z))

= {f ◦ φ, {g ◦ φ, h ◦ φ}P }P + {g ◦ φ, {h ◦ φ, f ◦ φ}P }P
+{h ◦ φ, {f ◦ φ, g ◦ φ}P }P(z) = 0. �
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3. Examples

As we already said symplectic and Poisson manifolds are particular cases of Leibniz
manifolds. We now briefly introduce other non-trivial examples.

(i) Pseudometric brackets and gradient dynamical systems.Let g : TP× TP→ R be a
pseudo-Riemannian metric on the smooth manifoldP , that is, a symmetric non-degenerate
tensor field of type(0,2) onP . Letg� : T ∗P → TPandg� : TP→ T ∗P be the associated
vector bundle maps. Given any smooth functionh ∈ C∞(P) we define its gradient∇h :
P → TPas the vector field onP given by∇h := g� dh. Let [·, ·] : C∞(P)×C∞(P)→ R

be the Leibniz bracket defined by

[f, h] := g(∇f,∇h)
for anyf, h ∈ C∞(P). We will refer to this bracket as thepseudometric bracketassociated
to g. This bracket is clearly symmetric and non-degenerate and the Leibniz vector fieldXh
associated to any functionh ∈ C∞(P) is such thatXh = ∇h. These brackets are also called
Beltrami brackets, see[16,32]. Gradient systems appear profusely in the context of control,
dynamical systems, and circuit theory (see[6,11,15,16,29], and references therein).

(ii) The three-wave interaction.A very relevant problem in dynamics is the study of
the interaction between non-linear oscillators and the energy exchange between them. This
problem can be viewed as an interaction between waves of different frequencies with dif-
ferent resonance conditions. A particular case that has deserved special attention is the so
called three–wave or triad interaction[3]. Following[7] this problem can be formulated as
a dynamical system inR3 that satisfies the differential equations given by

dx

dt
= s1γ1yz,

dy

dt
= s2γ2xz,

dz

dt
= s3γ3xy,

where the parameterss1, s2, s3 ∈ {−1,1} andγ1, γ2, γ3 are real numbers that satisfyγ1+
γ2+ γ3 = 0. This system happens to be a particular case of point (i) by taking the Leibniz
bracket induced by the constant pseudo-Riemannian metric:

g =




1

s1γ1
0 0

0
−1

s2γ2
0

0 0
1

s3γ3




and the Hamiltonian functionH(x, y, z) = xyz.
(iii) Double bracket dissipation.As we already said the Leibniz dynamical systems in-

duced by an almost Poisson bracket are energy preserving. Morrison[26] and Brockett
[12,13]have proposed the modeling of certain dissipative phenomena by adding a symmet-
ric bracket to a known antisymmetric one, that is:

[·, ·]Leibniz = {·, ·}skew+ [·, ·]sym,

where the bracket{·, ·}skew is skewsymmetric, [·, ·]sym is symmetric, and hence the sum
is a Leibniz bracket. This scheme allows the modeling of a surprising number of physical
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examples. The reader is encouraged to check with[10,23] for an account of applications
and references in this direction.

A particularly simple example that fits into this framework is the equation arising from
the Landau–Lifschitz model for the magnetization vectorM in an external vector fieldB:

Ṁ = γM× B+ λ

‖M‖2
(M× (M× B)), (3.1)

whereγ andλ are physical parameters. This equation is Leibniz in our sense if we take the
Leibniz bracket onR3 given by the sum of the two brackets:

{f, g}skew(M) := M · (∇f(M)×∇g(M)) and

[f, g]sym(M) := λ(M×∇f(M))(M×∇g(M))
γ‖M‖2

,

where the symbol× denotes the standard cross product onR
3 and∇ is the Euclidean

gradient. With this bracket the differentialequation (3.1)corresponds to the expression of
the Leibniz vector field determined by the function:

h(M) = γB ·M.
Another related example is the differential equation satisfied by a rigid body subjected to
certain dissipation (see[23]):

Ṁ = M×�+ α(M× (M×�)). (3.2)

In this expressionM is the momentum vector of the solid and� its angular velocity, both
in body coordinates. Recall that

� :=
(
M1

I1
,
M2

I2
,
M3

I3

)
,

where(I1, I2, I3) are the components of the inertia tensor of the body with respect to a basis
in which this tensor is diagonal. If we take the same bracket as before withα = λ/γ‖M‖2,
Eq. (3.2)coincide with the Hamilton equations corresponding to the function:

h(M) = 1

2

(
M2

1

I1
+ M

2
2

I2
+ M

2
3

I3

)
.

(iv) Almost Poisson manifolds and non-holonomically constrained mechanical systems.
The equations of motion of a simple mechanical system subjected to a constraint can be
written using D’Alembert’s Principle. When the constraints can be expressed as a linear
function on the velocities these equations admit a Leibniz formulation that corresponds
to the almost Poisson bracket introduced inDefinition 2.1. See[8,9,14,17,21,31,33]and
references therein. If the constraints do not satisfy the linearity condition the almost Poisson
formulation ceases to be valid in general. Nevertheless, if the constraints are affine on the
velocities the problem still admits a formulation in the context of Leibniz manifolds using a
bracket that in general is not antisymmetric. We discuss this point in detail in the following
section.
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4. Example: non-holonomic constraints

Let us consider a simple mechanical system characterized by a hyperregular Lagrangian
L : TQ → R on the tangent bundleTQ of a configuration spaceQ. One way to impose
kinematic constraints on that system consists of fixing an affine subbundleC ⊂ TQ, usually
referred to as the set of admissible kinematical states. The hyperregularity ofL implies that
the associated Legendre transformFL : TQ→ T ∗Q is a diffeomorphism that can be used
to define an associated Hamiltonian dynamical system onT ∗Q with Hamiltonian function
H , as well as theHamiltonian constraint submanifoldD := FL(C) onT ∗Q. Let

TD(T
∗Q) := {vα ∈ T(T ∗Q)|α ∈ D} = T(T ∗Q)|D

be the restricted bundle. D’Alembert’s Principle defines (see[21,22]) a vector subbundle
W ⊂ TD(T

∗Q) such that ifTD ∩ W = {0} and the Hamiltonian vector fieldXH |D is a
section ofTD⊕W then the corresponding splitting

XH |D = XHD +XHW
is well defined andXHD is the vector field whose flow describes the motion of the constrained
dynamical system. The vector fieldXHD is usually referred to as theevolution vector field
and the complementary vector fieldXHW as theconstraint force field.

Our goal in the following paragraphs consists of endowingT ∗Qwith a Leibniz structure
[·, ·] such that the Leibniz vector fieldXR

H associated toH is such that

XR
H(z) = XHD(z) ∀z ∈ D.

Theorem 4.1. AssumeT ∗Q paracompact. LetH ∈ C∞(T ∗Q) be a smooth function with
Hamiltonian vector field associatedXH .LetD ⊂ T ∗Qbe a closed and embedded constraint
submanifold andW ⊂ TD(T ∗Q)a smooth vector subbundle such thatTD(T

∗Q) = TD⊕W .
There exists a Leibniz structure[·, ·] onT ∗Q such that

XR
H(z) = πXH(z) =: XHD(z), z ∈ D, (4.1)

whereπ : TD⊕W → TD⊕W is the natural projection onto the TD summand.

Proof. Consider the bilinear mapping:

[·, ·]D : C∞(T ∗Q)× C∞(T ∗Q)→ C∞(D)

defined by [f, g]D(z) := 〈df(z), πB�(z)(dg(z))〉 for anyz ∈ D, and whereB� : T ∗(T ∗Q)→
T ∗(T ∗Q) is the vector bundle isomorphism induced by the canonical symplectic form of
T ∗Q. This bracket has a smooth sectionB̃D : D→ T 2

0(T
∗Q) associated given by

B̃D(z)(αz, βz) := 〈αz, πB�(z)(βz)〉
for anyαz, βz ∈ T ∗z (T ∗Q). By the smooth Tietze extension theorem (see for instance[2,
Theorem 5.5.9]), B̃D can be extended to a smooth sectionB̃ : T ∗Q→ T 2

0(T
∗Q). For any

f, g ∈ C∞(T ∗Q) we define

[f, g]L(m) = B̃(m)(df(m),dg(m)).



J.-P. Ortega, V. Planas-Bielsa / Journal of Geometry and Physics 52 (2004) 1–27 9

The bracket [·, ·]L : C∞(T ∗Q) × C∞(T ∗Q) → C∞(T ∗Q) endowsT ∗Q with a Leibniz
structure. Finally, we show that(4.1)holds. Indeed, for anyz ∈ D:

XR
H(z) = B̃�(z)(dH(z)) = B̃D(z)(dH(z)) = πB�(z)(dH(z)) = XHD(z). �

Remark 4.2. The Leibniz structures onT ∗Q for which(4.1)holds are not unique. This free-
dom in the construction of the bracket can be used in specific applications to study families of
systems instead of just a particular one, which may be of relevance in bifurcation theoretical
problems. We make this comment more specific with the following elementary example.

Consider a particle of massm constrained to move in a rotating hoop of massM whose
axis of rotation is parallel to the gravity and contains a diameter of the hoop. Letφ be
the angle that parameterizes the position of the bead in the hoop andψ the angle that
characterizes the position of the hoop. This setup can be seen as a simple mechanical
system with configuration space the two torusT

2 and subjected to the affine constraint
ψ̇ − ω = 0, whereω ∈ R is the constant angular speed of the hoop.

From the point of view of the formalism that we introduced above, for each valueω, there
is a Hamiltonian constraint submanifold,Dω and a vector subbundleW = span{∂/∂pψ}
provided by D’Alembert’s principle (see[21]) such that

T(T ∗T2) = TDω ⊕W.
As in the proof of the theorem, there exists for eachω a smooth sectioñBDω : Dω →
T 2

0(T
∗
T

2). Given that the spacesDω, ω ∈ R form a foliation ofT ∗T2 we can define the
sectionB̃ : T ∗T2 → T 2

0(T
∗
T

2) by B̃(z) = B̃Dω(z), wherez ∈ Dω. The bracket [·, ·]L
induced byB̃ on T ∗T2 can be used to describe the system forany value of the angular
velocity of the hoop. On other words ifH ∈ C∞(T2) is the Hamiltonian of the system then
XR
H(z) = XHDω(z) for anyz ∈ Dω and anyω ∈ R.

Remark 4.3. There are other brackets that can be found in the literature in the context
of mechanical systems with non-holonomic constraints. Most of them are equivalent to a
construction given in[33] that roughly consists of modifying the proof ofTheorem 4.1by
considering the bilinear mapping [·, ·]D : C∞(T ∗Q)× C∞(T ∗Q)→ C∞(D) defined by

[f, g]D(z) := 〈df(z), π ◦ B�(z) ◦ π∗(dg(z))〉 = B(z)(π∗(df(z)), π∗(dg(z)))
for anyz ∈ D and whereπ∗ is the dual of the vector bundle mapπ. This skew symmetric
bilinear map can be extended to an almost Poisson bracket{·, ·} onT ∗Q, using, as we did in
Theorem 4.1, the smooth Tietze extension theorem. The bracket{·, ·} is in general different
from the Leibniz structure [·, ·] introduced inTheorem 4.1.

When the constraint subbundleC is linear, the vector fieldsXH andXR
H associated to the

Hamiltonian of the system using the brackets{·, ·} and [·, ·], respectively, coincide inD and
the corresponding flow describes the actual dynamics of the constrained system. Indeed,
when the non-holonomic constraint is linear on the velocities, we can use the fundamental
fact thatdH |D ∈ W◦ (see[22]) or, equivalently, thatπ∗ dH(z) = dH(z) for any z ∈ D.
Consequently,

XH(z) = π ◦ B�(z) ◦ π∗(dH(z)) = π ◦ B�(z)(dH(z)) = XR
H(z) = XHD(z).



10 J.-P. Ortega, V. Planas-Bielsa / Journal of Geometry and Physics 52 (2004) 1–27

When the constraint subbundleC is strictlyaffinethe almost Poisson structure in[33] does
not generate the vector field of the constrained system out of the Hamiltonian function.
This has been pointed out in[14]. However, this is still true for the Leibniz bracket that we
introduced inTheorem 4.1.

More detailed information on the relations among the different brackets in the literature
can be found in[14,30], and references therein.

5. Symmetries and reduction of Leibniz systems

The symmetries of a dynamical system are in general very useful to simplify its study.
In the particular case of symplectic and Poisson manifolds this idea has been specifically
implemented using a procedure that is generically known asreduction(see[24,25,27,28]
and references therein). In the next two sections, we will adapt some aspects of the reduction
theory of symplectic and Poisson systems to the context of Leibniz manifolds.

In this section, we will consider symmetries of Leibniz systems that are encoded under the
form of Lie group and Lie algebra actions. Letg be a Lie algebra andP a smooth manifold.
We recall that aright (left) Lie algebra actionof gonP is a Lie algebra (anti)homomorphism
ξ ∈ g �→ ξP ∈ X(P) such that the mapping(m, ξ) ∈ P × g �→ ξP(m) ∈ TP is smooth.
The symbolX(P) denotes the set of smooth vector fields onP . We will denote byC∞(P)g
the set ofg-invariant smooth functions onP , that is,C∞(P)g := {f ∈ C∞(P)|df · ξP =
0 for any ξ ∈ g}.

Definition 5.1. Let (P, [·, ·]) be a Leibniz manifold andB ∈ T 2
0(P) the associated Leibniz

tensor. LetG be a Lie group (respectively,g a Lie algebra) acting onP . We say that this
G-action (respectively,g-action) is aweak symmetryof (P, [·, ·]) whenever the algebra
C∞(P)G (respectively,C∞(P)g) ofG-invariant functions onP is closed under the Leibniz
bracket. We say thatG (respectively,g) is a strong symmetryif G acts onP by Leibniz
maps (respectively, if £ξPB = 0 for anyξ ∈ g). Such actions will be sometimes referred to
ascanonical.

Definition 5.2. Let (P, [·, ·]) be a Leibniz manifold andg a Lie algebra acting onP . We
say that theg-action onP admits amomentum mapJ : P → g∗ whenever for anyξ ∈ g,
there exists a smooth functionfξ ∈ C∞(P) such that the componentJξ := 〈J, ξ〉 is also
smooth and

XL
Jξ = fξξP .

We will call the functionfξ theξ-integrating factor.

Remark 5.3. The notion of momentum map that we just defined is, in principle, not related
to the one introduced in[9]. That definition is based on a generalization to the non-holonomic
context of Smale’s formula for the momentum map associated to a lifted Lie group action
on the tangent bundle of the phase space.Definition 5.2is a generalization of the classical
definition in the symplectic and Poisson context where the hypothesis on the canonical
character of the action has been dropped. As we see in the next proposition, even without this
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hypothesis, the level sets of the momentum map are conserved by the dynamics generated
by any invariant Hamiltonian (Noether’s theorem). We recall that this is not the case for the
momentum map introduced in[9] where the momentum evolution is governed by the so
calledmomentum equation.

Proposition 5.4. Let (P, [·, ·]) be a Leibniz manifold andg a Lie algebra acting on P.
Assume that theg-action on P admits a momentum mapJ : P → g∗. Then the level sets
of the momentum map are preserved by the flows of the Leibniz vector fields associated to
anyg-invariant function on P.

Proof. Let h ∈ C∞(P)g andξ ∈ g be arbitrary. LetFt be the flow of the Leibniz vector
fieldXR

h . Then

d

dt
Jξ ◦ Ft = XR

h [Jξ] = [Jξ, h] = XL
Jξ [h] = fξξP [h] = fξ dh · ξP = 0. �

Remark 5.5. The introduction of the integrating factors in the definition of the momentum
map is not motivated by particular needs of the Leibniz category. Indeed, as we show in the
following example, even in the symplectic or in the Poisson category this seems to be the
only way to associate non-trivial conservation laws to non-canonical symmetries.

Let R
2
u be the upper half plane considered as a symplectic manifold with formω =

dx ∧ dy. Let (R,+) act onR
2
u by a · (x, y) := (x,eay) for any(x, y) ∈ R

2
u and anya ∈ R.

This action is clearly not canonical but it still admits a momentum map with a non-trivial
integrating factor that leads to a conservation law viaProposition 5.4. Indeed, for anyξ ∈ R,
the infinitesimal generatorξR2

u
is given byξR2

u
(x, y) = (0,eξy), (x, y) ∈ R

2
u. This vector

field is not Hamiltonian and hence this action does not have a traditional momentum map
associated. However, there is a momentum map available in the sense ofDefinition 5.2
since the mapsJ : R

2
u → R andfξ ∈ C∞(R2

u) given byJ(x, y) := x andfξ = −(ξ/eξy),
(x, y) ∈ R

2
u, ξ ∈ R, are such thatXJξ = fξξR2

u
. The conservation law associated by

Proposition 5.4to the existence of this momentum map can be phrased by saying that
the Hamiltonian flows corresponding to Hamiltonian functions that depend only on thex

variable preserve the vertical lines inR
2
u.

The following result shows that the orbit space corresponding to the weak symmetryG

of a Leibniz manifold(P, [·, ·]) is also a Leibniz manifold provided that the group action
satisfies enough regularity assumptions to guarantee that the quotientP/G is a regular
quotient manifold, that is,P/G can be endowed with a (unique) smooth structure that
makes the projectionπ : P → P/G a surjective submersion. This observation is consistent
with the result of Bates and Sniatycki[5] in the context of non-holonomic mechanics that
shows that symmetry reduction for these systems preserves the form of the equations of
motion.

Theorem 5.6. Let (P, [·, ·]) be a Leibniz manifold and let G be a Lie group acting on P in
such way that the orbit spaceP/G is a regular quotient manifold(this is the case when,
for instance, the action is free and proper). Assume that G is a weak symmetry of(P, [·, ·]).
Then
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(i) (P/G, [·, ·]P/G) is a Leibniz manifold with bracket[·, ·]P/G uniquely determined by
the expression:

[f, g]P/G ◦ π = [π∗f, π∗g] (5.1)

for anyf, g ∈ C∞(P/G) and whereπ : P → P/G is the projection.
(ii) The Leibniz structure induced by the bracket[·, ·]P/G onP/G is the only one for which

the projectionπ : P → P/G is a Leibniz map.
(iii) Let h ∈ C∞(P)G be a smooth G-invariant function on P andhP/G ∈ C∞(P/G)

the function on the quotient uniquely determined by the expressionhP/G ◦ π =
h. Let Xh andXhP/G be the corresponding Leibniz vector fields on(P, [·, ·]) and

(P/G, [·, ·]P/G), respectively,andFt andFP/Gt the associated flows. ThenDom(Ft) ⊂
π−1(Dom(FP/Gt )) and

F
P/G
t ◦ π(z) = π ◦ Ft(z) (5.2)

for anyz ∈ Dom(Ft). The vector fieldsXh andXhP/G areπ-related.

Proof. (i) We first check that(5.1) is a good definition for the bracket [·, ·]P/G. Letm,m′
be two points inP such thatπ(m) = π(m′). This equality implies that there exists an
elementg ∈ G such thatm′ = g · m. Let nowf, g ∈ C∞(P)G arbitrary. By definition
[f, g]P/G(π(m′)) = [f ◦ π, g ◦ π](m′). Since by hypothesisC∞(P)G is closed under the
bracket andf ◦ π andg ◦ π areG-invariant then so is [f ◦ π, g ◦ π] and hence

[f, g]P/G(π(m
′)) = [f ◦ π, g ◦ π](m′) = [f ◦ π, g ◦ π](g ·m)
= [f ◦ π, g ◦ π](m) = [f, g]P/G(π(m))

as required. The bracket [·, ·]P/G is clearly bilinear and is a derivation on its two argu-
ments. Therefore,(P/G, [·, ·]P/G) is a Leibniz manifold. (ii) It is a consequence of the
fact that the projectionπ is a surjective submersion. (iii) is a consequence of (ii) and
Lemma 2.5. �

We emphasize that the weak symmetry condition on the Leibniz bracket(P, [·, ·]) and
theG-invariance of the Hamiltonianh do not suffice to ensure theG-equivariance of the
associated Leibniz flowFt of Xh. In general only(5.2)holds. The flowFt isG-equivariant
whenever theG-action is a strong symmetry of the bracket.

Remark 5.7. The second part of the theorem shows that if theG-action is a weak symmetry
of a Leibniz manifold(P, [·, ·]) then the quotientP/G admits a unique Leibniz structure
[·, ·]P/G with respect to which the projectionπ : P → P/G is a Leibniz map. The converse
is also true. Indeed, letf, g ∈ C∞(P)G and f̄ , ḡ ∈ C∞(P/G) be the unique smooth
functions such that̄f ◦ π = f andḡ ◦ π = g. Then the bracket [f, g] ∈ C∞(P) is such that
for anyh ∈ G and anyz ∈ P :

[f, g](h · z) = [f̄ ◦ π, ḡ ◦ π](h · z) = [f̄ , ḡ]P/G(π(h · z)) = [f̄ , ḡ]P/G(π(z))

= [f̄ ◦ π, ḡ ◦ π](z) = [f, g](z),

which proves that [f, g] ∈ C∞(P)G and hence that theG-action is a weak symmetry.
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Remark 5.8. Proposition 2.6guarantees that if the Leibniz manifold(P, [·, ·]) in the pre-
vious theorem is actually Poisson then so is the reduced manifold(P/G, [·, ·]P/G).

Example 5.9. (i) Double bracket dissipation.Consider the systems with double bracket
dissipation that we studied inSection 3. This time we will restrict our discussion to the
points inR

3 that do not lie in the third axis. Assume that the magnetic vector fieldB is
constant and equal to the vector(0,0,1) or, in the case of the rigid body subjected to a
dissipative interaction, assume that the moments of inertiaI1 and I2 are equal. In both
cases, the rotations around the third axis, which is a free group action on the restricted
phase space, leave invariant the Hamiltonian functions and constitute a strong symmetry
for the Leibniz system which allows us to applyTheorem 5.6. For a concrete realization of
the quotient Leibniz structure we use the invariant polynomialsσ1 = (1/2)(M2

1+M2
2) and

σ2 = M3 of this action. In these coordinates the Leibniz tensor associated to the reduced
Leibniz structure takes the form:

B = γ

2σ1+ σ2
3

(
−2σ1σ

2
2 2σ1σ2

2σ1σ2 −2σ1

)
.

The reduced Hamiltonian functions areh(σ1, σ2) = γσ2 in the first case andh = (σ1/I1)+
(σ2

2/2I3) in the second.
(ii) Reduction of a Poisson system with a non-canonical symmetry.Consider the Poisson

dynamical system(R3∗, {·, ·}, H) onR
3∗ := R

3\{(x, y,0) ∈ R
3}, where the Poisson bracket

{·, ·} is determined by the Poisson tensor:

B(x, y, z) =




0 x y

−x 0 x

−y −x 0




for any (x, y, z) ∈ R
3∗ andH = (1/2)(x2 + y2). LetG := (R,+) act onR

3 by the map
φ : R× R

3 → R
3 given by

a · (x, y, z) = (x, y,eaz) for anya ∈ R and any(x, y, z) ∈ R
3.

This action is not canonical since, for example,φ∗a{y, z} = x �= eax = {φ∗ay, φ∗az}. However,
notice that since the algebra ofG-invariant functions is made by functions depending on
just the first two variables, that is,C∞(P)G = {f ∈ C∞(P)|f ≡ f(x, y)} thenC∞(P)G
is closed under the Poisson bracket. Consequently, byTheorem 5.6, (R3∗, {·, ·}, H) can be
reduced by this action. The reduced Poisson space isR

2 with the Poisson structure given
by the reduced Poisson tensor:

B
R

3∗/G(x, y) =
(

0 x

−x 0

)

and the reduced Hamiltonian ish(x, y) = (1/2)(x2+ y2).
(iii) A symmetry of the three-wave interaction.The HamiltonianH(x, y, z) = xyzof the

three-wave interaction that we presented inSection 3is invariant with respect to the action of
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the product of the two multiplicative groupsG := (R+, ·)×(R+, ·) by (λ1, λ2)·(x, y, z) :=
(λ1x, λ2y, λ3z), where(x, y, z) ∈ R

3, (λ1, λ2) ∈ R
+ × R

+, andλ3 := (λ1 · λ2)
−1. The

infinitesimal generator for this action is given byξR3(x, y, z) = (ax,by,−(a+b)z) for any
ξ := (a, b) ∈ R

2. Even though this action is not even a weak Leibniz symmetry we can
associate to it a momentum mapJ : R

3 → R
2 given by

J(x, y, z) =
(

1

2

(
x2

s1γ1
− z2

s3γ3

)
,
−1

2

(
y2

s2γ2
+ z2

s3γ3

))
.

By Proposition 5.4, the components ofJ are constants of the motion for the flow of the
Leibniz vector fieldXH .

(iv) Non-holonomically constrained particle.Consider a free particle inR3. We will
encode this setup as a Hamiltonian dynamical system on the cotangent bundleT ∗R3 en-
dowed with its canonical symplectic structure. We will denote byB ∈ Λ2(T ∗R3) the
Poisson tensor associated to this symplectic form. The Hamiltonian function of this system
isH(x, y, z, px, py, pz) = (1/2)(p2

x+p2
y+p2

z). Suppose that the particle is forced to satisfy
the affine constrainṫx+ yż− a = 0, wherea ∈ R. In this particular case, the Hamiltonian
constrained submanifold is given by

Da = {(x, y, z, px, py, pz) ∈ T ∗R3|px + ypz − a = 0}. (5.3)

Consequently,

T(x,y,z,px,py,pz)Da = span

{
∂

∂x
,
∂

∂y
+ pz ∂

∂px
,
∂

∂z
,
∂

∂py
,−y ∂

∂px
+ ∂

∂pz

}
.

Using D’Alembert’s principle (see[21]) we choose the subbundleWa ⊂ TDa(T ∗R3) given
by

Wa(x, y, z, px, py, pz) := span

{
∂

∂px
+ y ∂

∂pz

}

that satisfies the regularity conditionTDa(T
∗
R

3) = TDa⊕Wa. We now follow the scheme
introduced inSection 4. A straightforward computation shows that the projectionπa :
TDa ⊕ Wa → TDa and the compositioñB�Da := πa ◦ B� are given, using canonical
coordinates, by the matrices:

π(m) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0
−pz

1+ y2
0

y2

1+ y2
0

−y
1+ y2

0 0 0 0 1 0

0
−ypz

1+ y2
0

−y
1+ y2

0
1

1+ y2




,



J.-P. Ortega, V. Planas-Bielsa / Journal of Geometry and Physics 52 (2004) 1–27 15

B̃
�
Da
(m) =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−y2

1+ y2
0

y

1+ y2
0

−pz
1+ y2

0

0 −1 0 0 0 0

y

1+ y2
0

−1

1+ y2
0

−ypz
1+ y2

0




, (5.4)

wherem = (x, y, z, px, py, pz). Following the ideas introduced in theRemark 4.2and

noticing that the expression ofB̃�Da does not depend on the parametera, we can trivially

extendB̃Da to a Leibniz tensor̃B ∈ T 2
0(T

∗
R

3)whose restriction to anyDa,a ∈ R, coincides
with B̃Da . Using this extension and the expressions in(5.4)we can write the evolution vector
field of the constrained system as

XHD = B̃� dH,

which in canonical coordinates reads

ẋ = px, ẏ = py, ż = pz, ṗx = −pzpy
1+ y2

,

ṗy = 0, ṗz = −ypzpy
1+ y2

. (5.5)

Note that the constraint does not need to be included in the set of equations since for a set
of initial conditions satisfying the constraint, the dynamics will preserve it automatically.
From the point of view of the Leibniz formulation of the problem this remark can be phrased
by saying that the function defining the constraint is a left Casimir of the Leibniz system
(T ∗R3, B̃).

A momentum map.The HamiltonianH is symmetric with respect to the lifted action
of the translations on the configuration spaceR

3. The infinitesimal generators associated
to this action are given byξT ∗R3(x, y, z, px, py, pz) = (ξ,0) for any ξ ∈ R

3. The lifted
translations along theOY-axis admit a momentum mapJ : T ∗R3 → R with respect to the
Leibniz structure(T ∗R3, B̃), given by

J(x, y, z, px, py, pz) = py + φ(px + ypz),

whereφ is an arbitrary smooth real valued function. ByProposition 5.4J is preserved by
the integral curves of the evolution vector fieldXHD .

Reduction.Consider now the groupG := (R2,+) acting onT ∗R3 by lifting the trans-
lations in the coordinatesx andz. This action is a weak symmetry of(T ∗R3, B̃) and thus
we can applyTheorem 5.6. Let (T ∗R3/G, [·, ·]T ∗R3/G, h) be the reduced system.T ∗R3/G

can be identified withR4 since the points in this orbit space correspond to the elements of
the form(y, px, py, pz). Using this identification the reduced Hamiltonian can be written
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ash = (1/2)(p2
x + p2

y + p2
z) and the reduced Leibniz tensorB̃1 is given by

B̃
�
1(y, px, py, pz) =




0 0 1 0

0 0
−pz

1+ y2
0

−1 0 0 0

0 0
−ypz

1+ y2
0



.

This Leibniz structure has two independent left CasimirsCl
1(y, px, py, pz) = py,Cl

2(y, px,

py, pz) = px+ ypz and two independent right CasimirsCr
1(y, px, py, pz) = px,Cr

2(y, px,

py, pz) = pz. Consequently the new Hamiltonian functionh̄ := h− (1/2)((Cr
1)

2+ (Cr
2)

2),
that is,h̄(y, px, py, pz) = (1/2)p2

y, has the same evolution vector field than that ofh. This
equivalent Hamiltonian admits the symmetry of translations in the coordinatespx andpz
and hence we can further reduce the system onto a two-dimensional Leibniz one with tensor:

B̃
�
2(y, py) =

(
0 1
−1 0

)

and Hamiltonian functionh2 = (1/2)p2
y.

6. The reduction of a presheaf of Leibniz algebras

The reduction theorem that we presented in the previous section contains extremely
strong regularity hypotheses that allowed us to have a smooth orbit space onto which the
Leibniz bracket and the corresponding equivariant dynamics can be dropped. When these
hypotheses are not present, the orbit space is not smooth anymore but nevertheless, the
Leibniz algebra, or more specifically, thepresheaf of Leibniz algebrasassociated to the
bracket admits, under certain circumstances, a projection to the quotient. The algebraic
approach to reduction that we introduce in the following paragraphs has its origins in the
works[4,27] carried out in the context of symmetric Poisson manifolds.

We recall that asheafF of functions on a topological spaceP is a map that assigns to any
open setU a set of real valued functionsF(U) which is an algebra under multiplication. In
the definition it is also required that for every inclusionV ⊂ U of open sets there is a given
homomorphism resUV : F(U)→ F(V) called therestriction from U to V that satisfies the
following conditions:

(SH1) F(∅) = {0} and resUU : F(U)→ F(U) is the identity map.
(SH2) IfW ⊂ V ⊂ U are open sets, then resV

W ◦ resUV = resUW .
(SH3) LetU be an open set and{Vi}i∈I an open covering ofU. If f ∈ F(U) is such that

the restriction resUVi(f) of f to eachVi is 0, thenf = 0.
(SH4) LetU be an open set,{Vi}i∈I an open covering ofU, and letfi ∈ F(Vi) be given

for eachi ∈ I. Suppose that the restrictions offi andfj to Vi ∩ Vj are equal for all
i, j ∈ I. Then there exists a uniquef ∈ F(U) whose restriction to eachVi is fi for
all i ∈ I.
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When the mapF satisfies only properties (SH1) and (SH2) we say thatF is apresheaf.
The elements inF(U) are called thesectionsof F overU. The elements inF(P) are called
global sections.

Definition 6.1. Let M be a topological space with a presheafF of smooth functions. A
presheaf of Leibniz algebrason (P,F) is a map [·, ·] that assigns to each open setU ⊂ M
a bilinear operation [·, ·]U : F(U) × F(U) → F(U) such that the pair(F(U), [·, ·]U)
is a Leibniz algebra. A presheaf of Leibniz algebras will be usually denoted as a triple
(P,F, [·, ·]).

We say that the presheaf of Leibniz algebras(P,F, [·, ·]) is non-degeneratewhen if
f ∈ F(U), is such that [f, g]U∩V = 0 for anyg ∈ F(V) and any open set ofV , thenf is
constant in the connected components ofU.

Example 6.2. Any Leibniz manifold(P, [·, ·]) has a natural sheaf of Leibniz algebras on
its sheaf of smooth functions that associates to any open subsetU ofP the restriction [·, ·]|U
of [·, ·] to C∞(U)× C∞(U).

6.1. Leibniz reduction by pseudogroups

The main goal of this section is the presentation of a result that fully characterizes the
situations in which the sheaf of Leibniz algebras inExample 6.2behaves properly under
restriction to subsets and projection to the orbit spaces of pseudogroups of local Leibniz
diffeomorphisms of(P, [·, ·]).

We start by introducing our terminology. LetP be a smooth manifold and DiffL(P) the
pseudogroup of local diffeomorphisms ofP . More explicitly, the elements of DiffL(P) are
diffeomorphismsF : Dom(F) ⊂ P → F(Dom(F)) of an open subset Dom(F) ⊂ P onto
its imageF(Dom(F)) ⊂ P . We will denote the elements of DiffL(P) as pairs(F,Dom(F)).
The local diffeomorphisms can be composed using the binary operation defined as

(G,Dom(G)) · (F,Dom(F)) := (G ◦ F,F−1(Dom(G)) ∩ Dom(F)) (6.1)

for all (G,Dom(G)), (F,Dom(F)) ∈ Diff L(P). It is easy to see that this operation is
associative and has(I, P), the identity map ofP , as (unique) two-sided identity element,
which makes DiffL(P) into a monoid (set with an associative operation which contains a
two-sided identity element). Notice that only the elements in Diff(P) ⊂ Diff L(P) have an
inverse since, in general, for any(F,Dom(F)) ∈ Diff L(P), we have that

(F−1, F(Dom(F))) · (F,Dom(F)) = (I|Dom(F),Dom(F)), (6.2)

(F,Dom(F)) · (F−1, F(Dom(F))) = (I|F(Dom(F)), F(Dom(F))). (6.3)

Consequently, the only way to obtain the identity element(I, P) out of the composition of
F with its inverse is having Dom(F) = P . It follows from this argument that Diff(P) is the
biggest subgroup contained in the monoid DiffL(P) with respect to the composition law
(6.1). In the sequel we will frequently encounter submonoidsA of Diff L(P) that satisfy the
following property:
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(PS) for anyF : Dom(F) → F(Dom(F)) in A there exists another elementF−1 :
F(Dom(F))→ Dom(F) also inA that satisfies the identities(6.2) and (6.3).

Such submonoids will be referred to aspseudogroupsof Diff L(P). Recall thatA being a
submonoid implies that it is closed under composition and(I, P) ∈ A. One of the important
features of pseudogroups is that they have an associated orbit space. Indeed, ifA is a
pseudogroup we define theorbit A ·m underA of any elementm ∈ P as the setA ·m :=
{F(m)|F ∈ A, such thatm ∈ Dom(F)}. A being a pseudogroup implies that the relation
being in the same A-orbitis an equivalence relation and induces a partition ofP intoA-orbits.
Thespace of A-orbitswill be denoted byP/A. If we endow the space of orbitsP/A with
the quotient topology, the projectionπA : P → P/A is a continuous and open map.

Let S ⊂ P be a subset ofP endowed with a topologyT that in general does not coincide
with the relative or subspace topology. The sheafC∞P of smooth functions onP induces a
quotient sheafC∞P/A on the orbit spaceP/A. Consider now the subset

AS := {a ∈ A|a(s) ∈ S for any s ∈ S ∩ Dom(a)}.
All along this section we will assume thatAS is a subpseudogroup ofA. This hypothesis
will allow us to construct the quotientsS/AS andP/AS . Given that the quotientS/AS can
be seen as a subset ofP/AS , there is a well defined presheaf of Whitney smooth functions
W∞
S/AS

on S/AS induced byC∞P/AS . We recall (see[28]) that for any open setV ⊂ S/AS ,
the elementsf ∈ W∞

S/AS
(V) are characterized by the fact that ifπS : S → S/AS is the

projection onto orbit space then for anym ∈ π−1
S (V) there exists an openAS-invariant

neighborhood ofm in P andF ∈ C∞P (Um)AS such that

f ◦ πS |π−1
S (V)∩Um = F |π−1

S (V)∩Um. (6.4)

We will say thatF is a local extensionof f ◦ πS at the pointm.

Definition 6.3. LetP be a smooth manifold,A ⊂ Diff L(P) a pseudogroup of local diffeo-
morphisms ofP , andS a subset ofP endowed with a topologyT that is stronger than the
relative topology. We say that the presheafW∞

S/AS
has the(A,AS)-local extension property

whenAS is a subpseudogroup ofA and for anyf ∈ W∞
S/AS

(V) andm ∈ π−1
S (V) there exists

an openA-invariant neighborhoodUm of m inM andF ∈ C∞P (Um)A such that

f ◦ πS |π−1
S (V)∩Um = F |π−1

S (V)∩Um.

We will say thatF is aA-invariant local extensionof f ◦ πS atm.

Definition 6.4. Let (P, [·, ·]) be a smooth Leibniz manifold andA ⊂ PL(P) a pseudogroup
of local diffeomorphisms ofP such that the sheaf ofA-invariant functions onP is closed
under the Leibniz bracket [·, ·]. Let S ⊂ P be a subset ofP such thatW∞

S/AS
has the

(A,AS)-local extension property. We say that(P, [·, ·], A, S) is Leibniz reduciblewhen
(S/AS,W

∞
S/AS

, [·, ·]S/AS ) is a well defined presheaf of Leibniz algebras where for any open

setV ⊂ S/AS , the bracket [·, ·]S/ASV : W∞
S/AS

(V)×W∞
S/AS

(V)→ W∞
S/AS

(V) is given by

[f, g]S/ASV (πS(m)) = [F,G](m) (6.5)
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for anym ∈ π−1
S (V) and whereF,G areA-invariant local extensions atm of f ◦ πS and

g ◦ πS , respectively.

The following theorem generalizes the main reduction result in[27] to the context of
Leibniz manifolds with locally defined Leibniz weak symmetries.

Theorem 6.5. Let (P, [·, ·]) be a smooth Leibniz manifold andA ⊂ PL(P) a pseudogroup
of local diffeomorphisms of P such that the sheaf of A-invariant functions on P is closed
under the Leibniz bracket[·, ·]. Let S ⊂ P be a subset of P such thatW∞

S/AS
has the

(A,AS)-local extension property. LetB�L , B
�
R : T ∗M → TM be the left and right bundle

maps, respectively, associated to the Leibniz tensor of(P, [·, ·]). Then(P, [·, ·], A, S) is
Leibniz reducible if and only if for anym ∈ S we have that

B
�
L(∆m)+ B�R(∆m) ⊂ [∆Sm]◦, (6.6)

where∆m := {dF(m)|F ∈ C∞P (Um)A for any open A-invariant neighborhoodUm of m
in P}, and where∆Sm = {dF(m) ∈ ∆m|F |Um∩Vm is constant for an open A-invariant
neighborhoodUm of m in P and an openAS-invariant neighborhoodVm of m inS}.

Remark 6.6. If S has the relative topology then∆Sm = {dF(m) ∈ ∆m|F |Um∩S is constant}
for an openA-invariant neighborhoodUm of m in P .

Remark 6.7. If A consists of local Leibniz diffeomorphisms then the condition on the sheaf
of A-invariant functions onP being closed under the Leibniz bracket [·, ·] is automatically
satisfied.

Lemma 6.8. Let P be a smooth manifold, A ⊂ Diff L(P) a pseudogroup of local transfor-
mations of P, andS ⊂ P a subset whose topology is stronger than the relative topology
and such thatAS is a subpseudogroup of A. IfπS : S → S/AS is the projection, U ⊂ P
is an open A-invariant subset of P, F ∈ C∞P (U)A, andV := πS(U ∩ S) then there exists a
unique functionf ∈ W∞

S/AS
(V) such that

f ◦ πS |U∩S = f ◦ πS |π−1
S (V)∩U = F |π−1

S (V)∩U. (6.7)

Proof. Since by hypothesis the topology ofS is stronger than the relative topology we have
that for any openA-invariant subsetU of P , the intersectionU ∩ S is an openAS-invariant
subset ofS. As the projectionπS is an open map, the setV := πS(U ∩ S) is open inS/AS .
Also, theAS-invariance ofU ∩ S implies thatU ∩ S = π−1

S (V) and hence

π−1
S (V) ∩ U = U ∩ S ∩ U = U ∩ S, (6.8)

which proves the first equality in(6.7).
Now, the invariance properties ofF andS imply the existence of a unique mapf defined

onV such thatf ◦πS |U∩S = F |U∩S or equivalently, by(6.8),f ◦πS |π−1
S (V)∩U = F |π−1

S (V)∩U .

Given that by constructionπ−1
S (V) ⊂ U then for anym ∈ π−1

S (V), the mapf satisfies(6.4)
by taking in that characterizationU andF , which implies thatf ∈ W∞

S/AS
(V). �
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Proof of Theorem 6.5. We first show that if(P, [·, ·], A, S) is Leibniz reducible then
∆Sm ⊂ [B�L(∆m) + B�R(∆m)]◦ for all m ∈ S. Let αm ∈ ∆Sm; by definition there exists
an openA-invariant neighborhoodUm of m in P and a functionK ∈ C∞P (Um)A such
thatαm = dK(m) andK|Vm∩Um is constant for an openAS-invariant neighborhood ofm
in S. Notice now that by definition any element inB�L(∆m) + B�R(∆m) can be written as
XL
F (m)+XR

G(m)withF,G ∈ C∞(Wm)A,Wm an openA-invariant neighborhood ofm inP .
By Lemma 6.8there exist functionsk ∈ W∞

S/AS
(πS(Um∩S)) andf ∈ W∞

S/AS
(πS(Wm∩S))

such that

k ◦ πS |Um∩S = K|Um∩S, f ◦ πS |Wm∩S = F |Wm∩S.
Hence, by the Leibniz reducibility of(P, [·, ·], A, S) we have that

〈αm,XL
F (m)+XR

G(m)〉 = [K,G](m)− [F,K](m)

= [k|W, g|W ]S/ASW (πS(m))− [f |W, k|W ]S/ASW (πS(m)),

whereW = πS(Um ∩ S) ∩ πS(Wm ∩ S). However, given that the functionC onP that is
constant and equal toK(m) is also anA-invariant local extension ofk ◦ πS atm, we have
that

[k|W, g|W ]S/ASW (πS(m))− [f |W, k|W ]S/ASW (πS(m)) = [C,G] − [F,C] = 0,

which implies that〈αm,XL
F (m) + XR

G(m)〉 = 0. SinceXL
F (m) + XR

G(m) ∈ B�L(∆m) +
B
�
R(∆m) is arbitrary we have thatαm ∈ [B�L(∆m)+ B�R(∆m)]◦.
Suppose now that the inclusion(6.6) holds and then we will prove the reducibility of

(P, [·, ·], A, S). Letf, g ∈ W∞
S/AS

(V) andF,G ∈ C∞P (Um)A be localA-invariant extensions
of f ◦ πS andg ◦ πS , respectively, at a pointm ∈ π−1

S (V). We now show that the equality:

[f, g]S/ASV (πS(m)) = [F,G]Um(m) (6.9)

provides a well defined presheaf of Leibniz algebras. The only point that requires a proof is
that the expression(6.9)does not depend on the local extensions utilized in the definition.
The fact that [·, ·]S/AS determines a presheaf of Leibniz algebras is inherited from the
properties of the bracket [·, ·] on P . Let G′ ∈ C∞P (Um)A be another local extension of
g ◦ πS atm. This implies thatG − G′|

π−1
S (V)∩Um = 0 and henced(G − G′)(m) ∈ ∆Sm ⊂

[B�L(∆m)+ B�R(∆m)]◦. Consequently,

0= 〈d(G−G′)(m),XL
F (m)〉 = −[F,G−G′]Um(m),

which implies that [F,G]Um(m) = [F,G′]Um(m) and hence guarantees the independence of
(6.9)with respect to the choice of local extension forg◦πS . A similar argument guarantees
that this definition is also independent of the choice of extension forf ◦ πS . Therefore,
the expression(6.9) defines a function [f, g]S/ASV on V that actually belongs toW∞

S/AS
(V)

because ifF andG are localA-invariant extensions off ◦ πS andg ◦ πS , respectively,
at any pointm ∈ π−1

S (V) then so is the function{F,G} with respect to{f, g}S/AV ◦ πS by
the hypothesis on the sheaf ofA-invariant functions onP being closed under the Leibniz
bracket [·, ·]. �
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6.2. Leibniz reduction by distributions

The Leibniz reduction theorem that we presented inSection 6.1requires the presence of
a pseudogroup of transformations defined in the entire manifold. However, sometimes one
may want to reduce with respect to an invariance property defined only on a subset of the
manifold in question. The study of this situation is the main goal of this section.

We start by recalling the notion of decomposed space. LetZ be a locally finite partition of
the topological spaceP into smooth manifoldsSi ⊂ P , i ∈ I. We assume that the manifolds
Si ⊂ P , i ∈ I with their manifold topology are locally closed topological subspaces ofP .
We say that the pair(P,Z) is adecompositionof P with piecesin Z when the following
condition is satisfied:

(DS) If R, S ∈ Z are such thatR ∩ S̄ �= ∅, thenR ⊂ S̄. In this case we writeR  S. If, in
addition,R �= S we say thatR is incidentto S or that it is aboundary pieceof S and
writeR ≺ S.

The distributions in the next definition are allowed not to have constant rank, that is, we
are consideringgeneralizeddistributions.

Definition 6.9. Let P be a differentiable manifold andS ⊂ P a decomposed subset ofP .
Let {Si}i∈I be the pieces of this decomposition. The topology ofS is not necessarily the
relative topology as a subset ofP . We say thatD ⊂ TP|S is a smooth distribution on S
adapted to the decomposition{Si}i∈I , if D∩TSi is a smooth distribution onSi for all i ∈ I.
The distributionD is said to beintegrableif D ∩ TSi is integrable for eachi ∈ I.

In the situation described byDefinition 6.9and ifD is integrable, the integrability of the
distributionsDSi := D ∩ TSi on Si allows us to partition eachSi into the corresponding
maximal integral manifolds. Thus, there is an equivalence relation onSi whose equivalence
classes are precisely these maximal integral manifolds. Doing this on eachSi, we obtain an
equivalence relationDS on the whole setS by taking the union of the different equivalence
classes corresponding to all theDSi . We define the quotient spaceS/DS as

S/DS :=
⋃
i∈I
Si/DSi .

We will denote byπDS : S → S/DS the natural projection.

Definition 6.10. Let (P, [·, ·]) be a Leibniz manifold andD ⊂ TPa smooth distribution on
P . The distributionD is calledLeibnizor canonical, if the conditiondf |D = dg|D = 0 for
anyf, g ∈ C∞P (U) and any open subsetU ⊂ P , implies thatd[f, g]|D = 0.

The presheaf of smooth functions onS/DS . In this section, we will be considering a
presheaf of smooth functions onS/DS that require less invariance properties in their defini-
tion than those that appeared in the context of quotients by pseudogroups of transformations.
We define the presheaf of smooth functionsC∞S/DS on S/DS as the map that associates to
any open subsetV of S/DS the set of functionsC∞S/DS (V) characterized by the following
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property:f ∈ C∞S/DS (V) if and only if for anyz ∈ V there existsm ∈ π−1
DS
(V), Um open

neighborhood ofm in P , andF ∈ C∞P (Um) such that

f ◦ πDS |π−1
DS
(V)∩Um = F |π−1

DS
(V)∩Um. (6.10)

We say thatF is a local extensionof f ◦ πDS at the pointm ∈ π−1
DS
(V). It can be proved

(see[28]) that ifS is a smooth embedded submanifold ofP andDS is a smooth, integrable,
and regular distribution onS then the presheafC∞S/DS coincides with the presheaf of smooth
functions onS/DS when considered as a regular quotient manifold.

We say that the presheafC∞S/DS has the(D,DS)-local extension propertywhen the topol-
ogy of S is stronger than the relative topology and, at the same time, the local extensions
of f ◦ πDS defined in(6.10)can always be chosen so that

dF(n)|D(n) = 0 for any n ∈ π−1
DS
(V) ∩ Um.

We say thatF is a local D-invariant extensionof f ◦ πDS at the pointm ∈ π−1
DS
(V).

Definition 6.11. Let (P, [·, ·]) be a Leibniz manifold,S a decomposed subset ofP , and
D ⊂ TP|S a Leibniz integrable generalized distribution adapted to the decomposition ofS.
Assume thatC∞S/DS has the(D,DS)-local extension property. We say that(P, [·, ·],D, S) is

Leibniz reduciblewhen(S/DS,C∞S/DS , [·, ·]S/DS ) is a well defined presheaf of Leibniz al-

gebras where, for any open setV ⊂ S/DS , the bracket [·, ·]S/DSV : C∞S/DS (V)×C∞S/DS (V)→
C∞S/DS (V) is given by

[f, g]S/DSV (πDS (m)) := [F,G](m)

for anym ∈ π−1
DS
(V). The mapsF,G are localD-invariant extensions atm of f ◦ πDS and

g ◦ πDS , respectively.

The proof of the following theorem mimics the corresponding implication in
Theorem 6.5.

Theorem 6.12. Let (P, [·, ·]) be a Leibniz manifold with associated Leibniz tensor B, S a
decomposed space, andD ⊂ TP|S a Leibniz integrable generalized distribution adapted to
the decomposition of S. Assume thatC∞S/DS has the(D,DS)-local extension property. Then
(P, [·, ·],D, S) is Leibniz reducible if for anym ∈ S

B
�
L(∆m)+ B�R(∆m) ⊂ [∆Sm]◦, (6.11)

where∆m := {dF(m)|F ∈ C∞P (Um),dF(z)|D(z) = 0 for all z ∈ Um ∩ S, and for any open
neighborhoodUm ofm inP} and∆Sm := {dF(m) ∈ ∆m|F |Um∩Vm is constant for an open
neighborhoodUm ofm inP and an open neighborhoodVm ofm in S}.

Remark 6.13. If S is endowed with the relative topology then

∆Sm := {dF(m) ∈ ∆m|F |Um∩Vm is constant for an open neighborhoodUm of m inP}.
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Remark 6.14. As opposed to the situation inTheorem 6.5, the condition(6.11)is sufficient
for Leibniz reducibility but in general not necessary. The reason behind this circumstance
is that the functions that define the spaces∆m and∆Sm are not defined on saturated open
sets which prevents the formulation of a result similar toLemma 6.8. As we will see in
Theorem 6.15, an alternative hypothesis that makes this condition necessary and sufficient
is, roughly speaking, the regularity of the distributionDS := D ∩ TS.

Reduction by regular canonical distributions.Let (P, [·, ·]) be a Leibniz manifold andS
an embedded submanifold ofP . LetD ⊂ TP|S be a subbundle of the tangent bundle ofP

restricted toS such thatDS := D ∩ TSis a smooth, integrable, and regular distribution on
S andD is Leibniz. Our next theorem is a generalization of the main result of[24] to the
context of Leibniz manifolds.

Theorem 6.15. Let (P, [·, ·]) be a Leibniz manifold with associated Leibniz tensor B and
S an embedded smooth submanifold of P. LetD ⊂ TP|S be a canonical subbundle of the
tangent bundle of P restricted to S such thatDS := D ∩ TS is a smooth, integrable, and
regular distribution on S. Then(P, [·, ·],D, S) is Leibniz reducible if and only if

B
�
L(D

◦)+ B�R(D◦) ⊂ TS+D. (6.12)

Proof. We first prove that the condition(6.12)implies the Leibniz reducibility of(P, [·, ·],
D, S). This implication can be obtained as a corollary ofTheorem 6.12. Indeed, a result
whose proof can be found as Lemma 10.4.14 in[28] guarantees that the hypotheses onDS
imply that the presheafC∞S/DS has the(D,DS)-local extension property. Hence, it suffices
to show that in this situation:

∆m = D(m)◦, (6.13)

[∆Sm]◦ = TmS +D(m). (6.14)

In order to prove(6.13)notice first that by definition∆m ⊂ D(m)◦. To prove the converse
inclusion takeαm ∈ D(m)◦ arbitrary and letUm be a submanifold chart ofS aroundm
that we can think of asU × V ⊂ F1⊕ F2, whereU andV are open neighborhoods of the
origin in two vector spacesF1 andF2, respectively. This chart can be constructed so that
m ≡ (0,0) andUm∩S = U. Additionally, we can locally takeD = U×E, with E a vector
subspace ofF1⊕F2, TUm = U×V×(F1⊕F2), andT ∗Um = U×V×(F1⊕F2)

∗. In these
coordinatesαm ≡ (0,0, α), with α ∈ E◦. DefineF : U ×V → R byF(u, v) = 〈α, (u, v)〉.
Note thatdF(m) ≡ dF(0,0) = α ≡ αm and that for any(u,0, w) ∈ D(u,0), u ∈ U,
w ∈ E we have thatdF(u,0) ·w = 〈α,w〉 = 0, which implies thatdF(z)|D(z) = 0 for any
z ∈ Um ∩ S, as required.

We now prove(6.14). By definitionTmS + D(m) ⊂ [∆Sm]◦. Conversely, the inclusion
[∆Sm]◦ ⊂ TmS+D(m) holds if and only ifD(m)◦ ∩TmS◦ ⊂ ∆Sm which, by(6.13), amounts
to∆m ∩ TmS◦ ⊂ ∆Sm. We prove this inclusion by using again the same adapted local sub-
manifold coordinates around the pointm. Letαm ∈ ∆m∩TmS◦ arbitrary. As we saw above,
there existsα ∈ E◦ such thatαm = dF(0,0), with F : U × V → R given byF(u, v) :=
〈α, (u, v)〉, (u, v) ∈ U×V . Sinceαm ∈ (TmS)◦we have thatdF(0,0)·(u,0) = 〈α, (u,0)〉 =
0 for anyu ∈ F1. This equality implies thatF(u, v) = 〈α, (u,0)〉+ 〈α, (0, v)〉 = 〈α, (0, v)〉
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for any(u, v) ∈ U×V , and henceF is constant onU = Um∩S which shows thatαm ∈ ∆Sm,
as required.

We now show that the reducibility of(P, [·, ·],D, S) implies(6.12)or, equivalently, that
for anym ∈ S:

TmS
◦ ∩D(m)◦ ⊂ ((B�L(m)+ B�R(m))(D(m)◦))◦. (6.15)

We proceed again by using the same local coordinates. In this occasion we consider a
non-degenerate inner product〈·, ·〉F1⊕F2 onF1⊕F2 defined by〈(u1, u2), (v1, v2)〉F1⊕F2 =
〈u1, v1〉F1 + 〈u2, v2〉F2, with 〈·, ·〉F1 and〈·, ·〉F2 non-degenerate inner products inF1 and
F2, respectively, andu1, v1 ∈ F1, u2, v2 ∈ F2. Given thatUm ∩ S = U ⊂ F1 any element
αm ∈ TmS◦ can be written asαm = 〈(0, u0), ·〉F1⊕F2, for someu0 ∈ F2 or, analogously, as
αm = dK(m), withK ∈ C∞(Um) defined by

K(u, v) := 〈(0, u0), (u, v)〉F1⊕F2 = 〈u0, v〉F2. (6.16)

Moreover, ifαm ∈ TmS◦ ∩ D(m)◦ then asD in these coordinates looks likeD = U × E
for some vector subspaceE ⊂ F1 ⊕ F2, we have that the functionK defined in(6.16) is
such that

K|Um∩S = 0 and dK(z)|D(z) = 0 for any z ∈ Um ∩ S.
We have thus proven that anyαm ∈ TmS◦ ∩D(m)◦ can be written asαm = dK(m) with K
a localD-invariant extension of the zero function inS at the pointm ∈ S.

Let nowβm ∈ D(m)◦. Due to the non-degeneracy of the inner product〈·, ·〉F1⊕F2 there
existsw0 ∈ F1⊕ F2 such thatβm = dF(m) with F(u) := 〈w0, u〉F1⊕F2, u ∈ Um, and such
that 〈w0, w〉F1⊕F2 = 0 for anyw ∈ E. The regularity of the distributionDS implies via
a result of Godement (see Lemma 3.5.26 in[2]) that the neighborhoodUm can be shrunk
so that there exists a smooth submanifoldT of Um ∩ S (called alocal sliceof DS) and a
smooth maps : Um ∩ S → T such thats|T is the identity map onT and the integral leafLu
of DS that contains any arbitrary pointu ∈ Um ∩ S is such thatLu ∩ T = {s(u)}. Notice
now that sincedF |Um∩S ·DS |Um∩S = 0, we can use the slice and the mapF |Um∩S to define
another mapf ∈ C∞S/DS (πDS (Um ∩ S)) as the unique map that satisfies

f ◦ πDS (z) = F(z) = F(s(z)) for any z ∈ Um ∩ S.
Using the constructions in the last two paragraphs we can now write for anyαm ∈ TmS◦ ∩
D(m)◦ and anyβ1

m, β
2
m ∈ D(m)◦:

〈αm,B�L(m)(β1
m)+ B�R(m)(β2

m)〉
= [K,F ](m)−[G,K](m)= [0, f ]S/DSπDS (Um∩S)(πDS (m))− [g,0]S/DSπDS (Um∩S)(πDS (m))

= [0, F ](m)− [G,0](m) = 0, (6.17)

where in the last equality we used the Leibniz reducibility of(P, [·, ·],D, S) to write

[0, f ]S/DSπDS (Um∩S)(πDS (m))=[0, F ](m) and [g,0]S/DSπDS (Um∩S)(πDS (m)) = [G,0](m),

since the zero function onM is also an extension of the zero function onS that can be used
instead ofK in the definition of the bracket. The expression(6.17)establishes(6.15). �
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Example 6.16. We now illustrate the use ofTheorem 6.15by reducing the Leibniz system
that we constructed in (iv) ofExample 5.9to encode the dynamics of the non-holonomically
constrained particle. We recall that in this situation the Leibniz manifold consists of the pair
(T ∗R3, [·, ·]), where [·, ·] is the Leibniz bracket induced by the tensor that in coordinates
(x, y, z, px, py, pz) is given by the expression:

B̃�(x, y, z, px, py, pz) =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−y2

1+ y2
0

y

1+ y2
0

−pz
1+ y2

0

0 −1 0 0 0 0

y

1+ y2
0

−1

1+ y2
0

−ypz
1+ y2

0




. (6.18)

The equations of motion of the non-holonomically constrained particle given in(5.5)coin-
cide with the Leibniz vector field associated to the Hamiltonian functionH(x, y, z, px, py,

pz) = (1/2)(p2
x + p2

y + p2
z).

A straightforward verification shows that the embedded submanifold:

S := {(x, y, z, a, py,0)|x, y, z, py ∈ R}
is left invariant by the dynamics of the system, wherea ∈ R is the constant that appears in
the definition of the constraint(5.5).

Consider now the distributionD ⊂ T(T ∗R3)|S given by the vectors of the form:

D(m) := {(u,0, v,0,0,0)|u, v ∈ R}
for anym ∈ S. It is easy to see thatD is a canonical subbundle of the tangent bundle ofT ∗R3

restricted toS such thatDS := D∩TSis a smooth, integrable, and regular distribution onS.
We are now going to show that condition(6.12)in Theorem 6.15is satisfied and hence that
the Leibniz structure(T ∗R3, [·, ·]) induces a reduced Leibniz system(S/DS, [·, ·]S/DS ) via
the prescription inDefinition 6.11. Indeed, in this case

B̃
�
L(m)(D(m)

◦)+ B̃�R(m)(D(m)◦) = {(q, r, s,0, t,0)|q, r, s, t ∈ R}
for anym ∈ S, which is equal toTmS + D(m) = TmS. The reduced spaceS/DS can be
identified with the Euclidean spaceR2 endowed with the skew symmetric Leibniz tensor
BS/DS given by the matrix:

B
�
S/DS

=
(

0 1

−1 0

)
.

The dynamics of the non-holonomically constrained particle drops to the reduced space in
the form of a standard Hamiltonian dynamical system with Hamiltonian functionh̄(u, v) =
(1/2)v2.
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